Assouad dimension, Nagata dimension, and uniformly close metric tangents
نویسندگان
چکیده
منابع مشابه
Conformal Assouad Dimension and Modulus
Let α ≥ 1 and let (X, d, μ) be an α-homogeneous metric measure space with conformal Assouad dimension equal to α. Then there exists a weak tangent of (X, d, μ) with uniformly big 1-modulus.
متن کامل6 J ul 2 00 6 ON ASYMPTOTIC ASSOUAD - NAGATA DIMENSION
For a large class of metric spaces X including discrete groups we prove that the asymptotic Assouad-Nagata dimension AN-asdim X of X coincides with the covering dimension dim(ν L X) of the Higson corona of X with respect to the sublinear coarse structure on X. Then we apply this fact to prove the equality AN-asdim(X × R) = AN-asdim X + 1. We note that the similar equality for Gromov's asymptoti...
متن کاملThe metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملNagata Dimension and Quasi-möbius Maps
We show that quasi-Möbius maps preserve the Nagata dimension of metric spaces, generalizing a result of U. Lang and T. Schlichenmaier (Int. Math. Res. Not. 2005, no. 58, 3625–3655).
متن کاملAssouad Dimension of Self-affine Carpets
We calculate the Assouad dimension of the self-affine carpets of Bedford and McMullen, and of Lalley and Gatzouras. We also calculate the conformal Assouad dimension of those carpets that are not self-similar.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2015
ISSN: 0022-2518
DOI: 10.1512/iumj.2015.64.5469